哈希游戏- 哈希游戏平台- 哈希游戏官方网站2024年全年新能源乘用车电驱搭载量预测1150万套,三合一及多合一电驱动系统搭载量有望达到850万套,1~10月份新能源汽车销量975万辆,其中多合一的搭载比例超过了20%,主要应用于A级车。三合一或多合一集成的电驱系统逐步成为市场的主流技术路线日,在第五届汽车电驱动及关键技术大会上,合众汽车动力总成总工程师刘平宙认为,从消费者购买电动汽车的痛点和和整车开发需求出发,结合系统关键属性,零部件技术朝着集成化、平台化、模块化、低成本等方向发展。从当前行业痛难点来看,搭载于新能源汽车电驱关键技术需要突破低成本、小体积、高效率、长续航、高可靠、长寿命、高舒适、低噪音、高安全、高智能等十大技术指标。同时,电驱技术发展趋势大体可分为三代,第一代为分体式,第二代为三合一,逐渐走向第三代,即多合一深度集成。
近年来,随着新能源汽车在市场渗透率的持续攀升,电驱系统集成化产品的应用日益广泛,尤其是“三合一”电驱系统,已占据市场的主导地位。与此同时,随着“多合一”技术的不断成熟与广泛应用,其市场占有率也显著提升。据统计,今年1至6月,该类型产品在整个市场的占比已达到20%,预计随着市场推广的深入,至10月其市场占有率可能达到30%甚至更高。在新能源汽车的运营过程中,消费群体或终端用户对产品有着一系列重点关注的问题,我们将其归纳为七大痛点与八大需求。基于这些反馈,我们定义了一系列关键属性,并据此对技术发展方向的相关问题进行了梳理与归纳。
驱动桥更多应用于商用车领域,而由于乘用车空间限制,其实用性相对有限。我在2013年与整车厂联合开发的一款轮边驱动桥产品,当时已成功实现批量生产,并出口至美国市场。该产品性能卓越,但遗憾的是,由于电子差速设计上的不足,导致了严重的轮胎磨损问题。此外,针对充电焦虑问题,行业内推出了800V碳化硅产品的定义。800V系统带来了诸多优势,但同时也伴随着一些挑战。随着800V系统的普及,现在也已经有900V系统问世,那么未来的发展方向又将如何?我认为,1200V系统值得我们去探索。
就驱动电机的发展现状而言,扁形电机已成为主流选择,圆形电机或将逐渐退出市场。扁线电机在技术成熟度与产能方面均已达到较高水平。在冷却方式上,当前应用最广泛的是水冷技术。然而,随着对效率与体积要求的不断提升,油冷电机正逐渐取代水冷电机,成为新的趋势,同时相变冷却技术也备受关注。转速方面,当前趋势是朝着35000转的高转速发展,高转速技术的提升带来了诸多优势。是否必须追求35000转,或是30000转、27000转,乃至25000转以上的电机,则取决于各家企业的技术路线与策略选择。每家企业会根据自身的技术特点与市场需求,做出最适合自己的技术决策。
W-pin在扩展至槽内时,要求槽口宽度相应增加,对效率、功率因数、温升、扭矩波动以及NVH等方面产生一系列影响。为解决这些问题,可能会考虑采用磁性槽楔。尽管磁性槽楔在工业电机中有一定应用,但在驱动电机中的效果却未必理想。驱动电机的工作频率变化极快,如果磁性槽楔在交变磁场中产生感应电势或电流,可能会带来不利影响。不同企业对这一选择可能存在差异。目前,国内首条W-pin生产线已正式投产,但其实际效果仍需进一步接受市场验证。
对于整个电驱动系统而言,提升效率并非单一方面的简单提升。超级硅钢、软磁材料以及非晶合金等材料均为当前可见的选择。然而,超级硅钢在市场价格及产能方面,目前市场的接受度尚显不足。软磁材料与非晶材料在高频电机中表现出色,但在中低频段或低转速条件下,由于磁饱和程度较高(约为1.5-1.6),磁路过早进入饱和状态,对于低速大扭矩的应用场景并不利。然而,在中高转速段,这些材料能带来一些显著的优势,主要得益于其较低的损耗。
目前广泛应用的电机多为三相电机,然而三相电机存在一个显著的缺陷,即绝缘问题,任何一相的绝缘失效都会导致电机无法正常工作。为了克服这一难题,我们内部研发了一款六相电机,并且该电机已被应用于我们的十三合一项目中。在整个产品开发过程中,我们获得了诸多益处,整个NVH、扭矩波动、EMC以及谐波大幅降低。此外,功能安全性和EMC等级也得到了显著提升。六相电机还能大幅降低轴电压和轴电流,可以减少对轴承,特别是陶瓷球轴承的依赖,对成本控制具有积极影响。当然,各家厂商的选择可能有所不同,但多相电机无疑是未来电机发展的一个重要方向。
减速器领域,目前的主流设计仍以平行轴减速器为主。然而,随着对体积和空间布置要求的日益提升,同轴式或行星结构的减速器正逐渐增多。行星结构减速器有望在未来几年内取代平行轴减速器。虽然行星结构减速器的成本不一定更低,但由于其体积减小、材料用量减少,其主要的挑战在于噪声、振动与NVH的控制。如果能有效解决NVH问题,或即使NVH表现稍逊,但若能带来空间布置的优化、重量的减轻或体积的缩小,对整车制造商而言仍将是极具吸引力的选择。
随着电机转速的不断提升,我们需要权衡是追求更高的转速,还是仅确保动力性能输出满足要求即可。如果不需过分追求高转速,可考虑采用多档减速器方案。多档方案包括两档、三档等,但超过三档的结构将变得非常复杂。两档减速器可能存在换档冲击的问题,影响驾乘舒适性,但对于越野车而言,这一点或许并不被过分关注,因为越野车用户更看重动力性能。采用多档减速器可以降低电机转速要求,例如将转速控制在12000转/分钟以内,这有利于材料、扭矩和体积的小型化。然而,多档减速器的结构会相对复杂一些。
对于热衷于户外驾驶和越野活动的用户而言,如果车辆采用单减速器或单驱动系统,为了应对脱困和自救等场景,限滑差速器或电子差速器显得尤为重要。当然,在分布式驱动系统中,这一问题可能得到较好的解决,因此无需过多考虑。但对于采用前后两台电机的单驱动系统产品,尤其是非轮毂电机驱动的系统,这一问题仍需关注。因为在某些极端情况下,如果一个或多个车轮悬空,车辆如何顺利脱困便成为了一个关键问题,此时差速器的应用便显得尤为重要。目前,市场上对于此类产品的需求仍然较为旺盛。
电控领域的实际应用中,多合一技术主要表现为板级集成、芯片集成以及软件集成。从硬件架构的角度来看,我们可以观察到物理集成、板级集成以及芯片集成等多种形式。硬件融合是直观可见的,而软件融合则隐藏于系统内部。多合一系统对芯片算力提出了较高要求,通常需要采用多核芯片进行控制。如果采用多个芯片进行技术部署,不仅复杂度高,而且在成本上并无明显优势。控制算法方面,诸如斜坡注入、主动发热技术等,在行业内已较为常见。我们也在此基础上进行了一些创新性的探索,其中一项关键技术是双载波自适应技术。该技术旨在最大限度地提升电流的正弦流动,从而有效减少交流铜损以及磁钢涡流损耗,同时抑制电机的谐波和振动。这对NVH、EMC以及效率都有所帮助。